>[!abstract]
>The proof that $1 = 2$ is a classic case of a [[Falsidical paradox|falsidical paradox]] in mathematics. In the variant below, the hidden fallacy occurs on line 5 when dividing by $a − b$, which is zero since $a = b$. Since division by zero is undefined, the argument is invalid.
>[!example] "Proof"
>1. Let _a_ and _b_ be equal, nonzero quantities.
>$ \begin{flalign} a = b && \end{flalign} $
>2. Multiply by _a_
>$ \begin{flalign} a^2 = ab && \end{flalign} $
>3. Subtract *b$^2$*
>$ \begin{flalign} a^2 - b^2 = ab - b^2 && \end{flalign} $
>4. Factor both sides: the left factors as a difference of squares, the right by extracting b
>$ \begin{flalign} (a - b)(a + b) = b(a - b) && \end{flalign} $
>5. Divide out *(a - b)*
>$ \begin{flalign} a + b = b && \end{flalign} $
>6. Use the fact that _a_ = _b_
>$ \begin{flalign} b + b = b && \end{flalign} $
>7. Combine like terms on the left
>$ \begin{flalign} 2b = b && \end{flalign} $
>8. Divide by *b* (allowed because *b* is non-zero)
>$ \begin{flalign} 2 = 1 && \end{flalign} $
>[!related]
>- **North** (upstream): [[Falsidical paradox]]
>- **West** (similar): —
>- **East** (different): [[Howler]]
>- **South** (downstream): —